For each angle listed in the table below select the letter o
Solution
The points A,B,C,D,E,F are all on the circumference of a unit circle so each of lines connecting the center of the circle to these points = 1. Sin = Perpendicula/hypotenuse = y-coordinate/1 =y-coordinate; cos = base/hypotenuse = x-coordinate/1 = x- coordinate.
Angle
Point
x-coordinate
y-coordinate
Reason
-4000
F
0 .766
-0.643
-4000 = -3600 – 400 = -400; Sin (-400)=-0.643;cos(-400 )= 0.766
450
A
2/2
2/2
The line from the center of the circle to A bisects the angle of 900 sin(45) = cos(45) = 2/2
8000
B
0.174
0.985
8000 = 2*3600 + 800 ; sin(800) =0.985 cos(800) = 0.174
-1500
D
-3/2
-1/2
-1500 = - (1800 – 300); sin(-1500)= -1/2 cos(-1500)= -3/2
1500
C
-3/2
1/2
1500 = (1800 – 300); sin(1500)=1/2 cos(1500)= -3/2
2500
E
-0.342
-0.940
2500 = ( 1800 + 700 ) sin(2500)= -0.940 cos(2500)= -0.342
| Angle | Point | x-coordinate | y-coordinate | Reason |
| -4000 | F | 0 .766 | -0.643 | -4000 = -3600 – 400 = -400; Sin (-400)=-0.643;cos(-400 )= 0.766 |
| 450 | A | 2/2 | 2/2 | The line from the center of the circle to A bisects the angle of 900 sin(45) = cos(45) = 2/2 |
| 8000 | B | 0.174 | 0.985 | 8000 = 2*3600 + 800 ; sin(800) =0.985 cos(800) = 0.174 |
| -1500 | D | -3/2 | -1/2 | -1500 = - (1800 – 300); sin(-1500)= -1/2 cos(-1500)= -3/2 |
| 1500 | C | -3/2 | 1/2 | 1500 = (1800 – 300); sin(1500)=1/2 cos(1500)= -3/2 |
| 2500 | E | -0.342 | -0.940 | 2500 = ( 1800 + 700 ) sin(2500)= -0.940 cos(2500)= -0.342 |

