Let the random variable X have a pmf px 13 x 123 zero else
Let the random variable X have a p.m.f. p(x) = 1/3, x = 1,2,3, zero elsewhere. Find the p.m.f. of Y = 2X + 1. Let X be a random variable with the expected value of X equal to one hundred and sigma2 equal to fifteen. What are... E (X2 ) .E (-X) E ( 3X + 10 ) Standard deviation of -X ?
Solution
p(x) = 1/3, x = 1,2,3
Y = 2x+1
y can take values as 3, 5, 7
Prob (y) = 1/3 for y = 3,5,7
-----------------------------------------
b) E(x) = 100
sigma^2 = 15
E(X^2)-100^2 = sigma^2
So
i) E(x^2) = 10015
ii) E(3x+10) = 3E(X)+10
= 310
iii) E(_x) = -E(X) = -100
iv. Var (-x) = Var (X) = 15
std dev of -x = rt 15
