Assume that a population is normally distributed with a mean
     Assume that a population is normally distributed with a mean of 100 and a standard deviation of 15. Would it be unusual for the mean of a sample of 3 to be 115 or more? Why or why not?  
  
  Solution
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    115      
 u = mean =    100      
 n = sample size =    3      
 s = standard deviation =    15      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    1.732050808      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.732050808   ) =    0.041632258 [ANSWER]
********************************
If this is unusual depends on the standard. Some classes us P < 0.05 as unusual. In that case, it is unusual.

