Let z denote a random variable having a standard normal dist
Let z denote a random variable having a standard normal distribution. Determine the following probabilities: p[ -2.50 z 1.75] p[ -2.0 z -0.5] p[z 1.57] use the z - able to find a number c such that: P[ Z C] = 0.617
Solution
a)
1) p(-2.50<z<1.75)
=p(z<1.75) - p(z<-2.50)
= 0.9599408- 0.006209665
=0.9537312
2) p(-2<z< -0.5)
=p(z< -0.5) - p(z< -2)
= 0.3085375-0.02275013
=0.2857874
3) p(z<1.57)
= 0.9417924
b)
1) p(z<c)= 0.617
value of c = -0.9660883
2) p(-2.50<z<c)=0.95
=p(z<c) - p(z<-2.50) = 0.95
p(z<c)-0.006209665= 0.95
p(z<c)= 0.9562097
thus c = 1.7083
3) p(z<c) = 0.8749
thus c= 1.149864
![Let z denote a random variable having a standard normal distribution. Determine the following probabilities: p[ -2.50 z 1.75] p[ -2.0 z -0.5] p[z 1.57] use the Let z denote a random variable having a standard normal distribution. Determine the following probabilities: p[ -2.50 z 1.75] p[ -2.0 z -0.5] p[z 1.57] use the](/WebImages/16/let-z-denote-a-random-variable-having-a-standard-normal-dist-1025976-1761531207-0.webp)