What is the value of cos2180x sin2180x for any real number
What is the value of cos^2(180x) + sin^2(180x) for any real number x? It cannot be determined because it depends on x. 0 1 -1 None of the above. Simplify the expression = cos^2(x) -1/sin(x) sin^3(x) sin^2(x) cos(x) -sin (x) None of the above. if f(t) is a trigonometric function such that (f(t))^2 = sec(t) - cos(t)/sec (t), then what is f(t)? sin(t) cos(t) sec(f) csc(t) None of the above. Without using a calculator to find the value for cos(396 degree) cos (126 degree) + sin (396 degree) sin (126 degree). 1.2345 0 -1.051 -1.052 None of the above.
Solution
13. cos2180x + sin2180x
According to pythagoras identity
cos2theta + sin2theta=1
Therefore
cos2180x + sin2180x=1
Hence the correct option is c.
14. (cos2x-1)/sinx
According to pythagoras identity
cos2x=1-sin2x
(1 - sin2x-1)/sinx= -sin2x/sinx = -sinx
Hence the correct option is D
15. f(t)2= (sec t - cos t)/sec t
f(t)2= (1/cost - cost)/1/cos t
f(t)2= (1-cos2t)=sin2t
f(t)2=sin2t
f(t)=sin t
Hence the correct option is A
16. cos 396 cos 126 + sin 396 sin 126
This is of the form
cos A cos B +sinA sin B= cos(A-B)
Therefore cos 396 cos 126+ sin 396 sin 126= cos(396-126)=cos 270=0
Hence the correct option is B
