Describe a data structure that supports both removeMin and r

Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(), and removeMax(), and prove their complexity. Hint: one can build on top of the heap.

/*IF YOU WRITE CODE, PLEASE PROVIDE COMMENTS*/
I need to understand
Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(), and removeMax(), and prove their complexity. Hint: one can build on top of the heap.

/*IF YOU WRITE CODE, PLEASE PROVIDE COMMENTS*/
I need to understand
Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(), and removeMax(), and prove their complexity. Hint: one can build on top of the heap.

/*IF YOU WRITE CODE, PLEASE PROVIDE COMMENTS*/
I need to understand

Solution

The idea here is to use the concept of two binary heaps along with the concept of list(doubly linked list).

The doubly linked list contains all input items and indexes of corresponding min and max heap nodes. The nodes of min and max heaps store addresses of nodes of doubly linked list. The root node of min heap stores the address of minimum item in doubly linked list. Similarly, root of max heap stores address of maximum item in doubly linked list. Following are the details of operations.

1) findMax(): We get the address of maximum value node from root of Max Heap. So this is a O(1) operation.

1) findMin(): We get the address of minimum value node from root of Min Heap. So this is a O(1) operation.

3) removeMin(): We get the address of minimum value node from root of Min Heap. We use this address to find the node in doubly linked list. From the doubly linked list, we get node of Max Heap. We delete node from all three. We can delete a node from doubly linked list in O(1) time. delete() operations for max and min heaps take O(Logn) time.

4) removeMax(): is similar to deleteMin()

5) Insert() We always insert at the beginning of linked list in O(1) time. Inserting the address in Max and Min Heaps take O(Logn) time. So overall complexity is O(Logn)

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

// A node of doubly linked list

struct LNode

{

    int data;

    int minHeapIndex;

    int maxHeapIndex;

    struct LNode *next, *prev;

};

// Structure for a doubly linked list

struct List

{

    struct LNode *head;

};

// Structure for min heap

struct MinHeap

{

    int size;

    int capacity;

    struct LNode* *array;

};

// Structure for max heap

struct MaxHeap

{

    int size;

    int capacity;

    struct LNode* *array;

};

// The required data structure

struct CDS

{

    struct MinHeap* minHeap;

    struct MaxHeap* maxHeap;

    struct List* list;

};

// A utility function to create a new List node

struct LNode* newLNode(int data)

{

    struct LNode* node =

        (struct LNode*) malloc(sizeof(struct LNode));

    node->minHeapIndex = node->maxHeapIndex = -1;

    node->data = data;

    node->prev = node->next = NULL;

    return node;

}

// Utility function to create a max heap of given capacity

struct MaxHeap* createMaxHeap(int capacity)

{

    struct MaxHeap* maxHeap =

     (struct MaxHeap*) malloc(sizeof(struct MaxHeap));

    maxHeap->size = 0;

    maxHeap->capacity = capacity;

    maxHeap->array =

     (struct LNode**) malloc(maxHeap->capacity * sizeof(struct LNode*));

    return maxHeap;

}

// Utility function to create a min heap of given capacity

struct MinHeap* createMinHeap(int capacity)

{

    struct MinHeap* minHeap =

       (struct MinHeap*) malloc(sizeof(struct MinHeap));

    minHeap->size = 0;

    minHeap->capacity = capacity;

    minHeap->array =

       (struct LNode**) malloc(minHeap->capacity * sizeof(struct LNode*));

    return minHeap;

}

// Utility function to create the main data structure

// with given capacity

struct CDS* createCDS(int capacity)

{

    struct CDS* CDS =

        (struct CDS*) malloc(sizeof(struct CDS));

    CDS->minHeap = createMinHeap(capacity);

    CDS->maxHeap = createMaxHeap(capacity);

    CDS->list = createList();

    return CDS;

}

// Some basic operations for heaps

int isMaxHeapEmpty(struct MaxHeap* heap)

{ return (heap->size == 0); }

int isMinHeapEmpty(struct MinHeap* heap)

{ return heap->size == 0; }

int isMaxHeapFull(struct MaxHeap* heap)

{ return heap->size == heap->capacity; }

int isMinHeapFull(struct MinHeap* heap)

{ return heap->size == heap->capacity; }

  

// The standard minHeapop function. The only thing it does extra

// is swapping indexes of heaps inside the List

void minHeapop(struct MinHeap* minHeap, int index)

{

    int smallest, left, right;

    smallest = index;

    left = 2 * index + 1;

    right = 2 * index + 2;

    if ( minHeap->array[left] &&

         left < minHeap->size &&

         minHeap->array[left]->data < minHeap->array[smallest]->data

       )

        smallest = left;

    if ( minHeap->array[right] &&

         right < minHeap->size &&

         minHeap->array[right]->data < minHeap->array[smallest]->data

       )

        smallest = right;

    if (smallest != index)

    {

        // First swap indexes inside the List using address

        // of List nodes

        swapData(&(minHeap->array[smallest]->minHeapIndex),

                 &(minHeap->array[index]->minHeapIndex));

        // Now swap pointers to List nodes

        swapLNode(&minHeap->array[smallest],

                  &minHeap->array[index]);

        // Fix the heap downward

        minHeapop(minHeap, smallest);

    }

}

// The standard maxHeapop function. The only thing it does extra

// is swapping indexes of heaps inside the List

void maxHeapop(struct MaxHeap* maxHeap, int index)

{

    int largest, left, right;

    largest = index;

    left = 2 * index + 1;

    right = 2 * index + 2;

    if ( maxHeap->array[left] &&

         left < maxHeap->size &&

         maxHeap->array[left]->data > maxHeap->array[largest]->data

       )

        largest = left;

    if ( maxHeap->array[right] &&

         right < maxHeap->size &&

         maxHeap->array[right]->data > maxHeap->array[largest]->data

       )

        largest = right;

    if (largest != index)

    {

        // First swap indexes inside the List using address

        // of List nodes

        swapData(&maxHeap->array[largest]->maxHeapIndex,

                 &maxHeap->array[index]->maxHeapIndex);

        // Now swap pointers to List nodes

        swapLNode(&maxHeap->array[largest],

                  &maxHeap->array[index]);

        // Fix the heap downward

        maxHeapop(maxHeap, largest);

    }

}

// Standard function to insert an item in Min Heap

void insertMinHeap(struct MinHeap* minHeap, struct LNode* temp)

{

    if (isMinHeapFull(minHeap))

        return;

    ++minHeap->size;

    int i = minHeap->size - 1;

    while (i && temp->data < minHeap->array[(i - 1) / 2]->data )

    {

        minHeap->array[i] = minHeap->array[(i - 1) / 2];

        minHeap->array[i]->minHeapIndex = i;

        i = (i - 1) / 2;

    }

    minHeap->array[i] = temp;

    minHeap->array[i]->minHeapIndex = i;

}

// Standard function to insert an item in Max Heap

void insertMaxHeap(struct MaxHeap* maxHeap, struct LNode* temp)

{

    if (isMaxHeapFull(maxHeap))

        return;

    ++maxHeap->size;

    int i = maxHeap->size - 1;

    while (i && temp->data > maxHeap->array[(i - 1) / 2]->data )

    {

        maxHeap->array[i] = maxHeap->array[(i - 1) / 2];

        maxHeap->array[i]->maxHeapIndex = i;

        i = (i - 1) / 2;

    }

    maxHeap->array[i] = temp;

    maxHeap->array[i]->maxHeapIndex = i;

}

// Function to find minimum value stored in the main data structure

int findMin(struct CDS* CDS)

{

    if (isMinHeapEmpty(CDS->minHeap))

        return INT_MAX;

    return CDS->minHeap->array[0]->data;

}

// Function to find maximum value stored in the main data structure

int findMax(struct CDS* CDS)

{

    if (isMaxHeapEmpty(CDS->maxHeap))

        return INT_MIN;

    return CDS->maxHeap->array[0]->data;

}

// Function to delete maximum value stored in the main data structure

void removeMax(struct CDS* CDS)

{

    MinHeap *minHeap = CDS->minHeap;

    MaxHeap *maxHeap = CDS->maxHeap;

    if (isMaxHeapEmpty(maxHeap))

        return;

    struct LNode* temp = maxHeap->array[0];

    // delete the maximum item from maxHeap

    maxHeap->array[0] =

        maxHeap->array[maxHeap->size - 1];

    --maxHeap->size;

    maxHeap->array[0]->maxHeapIndex = 0;

    maxHeapop(maxHeap, 0);

    // remove the item from minHeap

    minHeap->array[temp->minHeapIndex] = minHeap->array[minHeap->size - 1];

    --minHeap->size;

    minHeap->array[temp->minHeapIndex]->minHeapIndex = temp->minHeapIndex;

    minHeapop(minHeap, temp->minHeapIndex);

    // remove the node from List

    removeLNode(CDS->list, &temp);

}

// Function to delete minimum value stored in the main data structure

void removeMin(struct CDS* CDS)

{

    MinHeap *minHeap = CDS->minHeap;

    MaxHeap *maxHeap = CDS->maxHeap;

    if (isMinHeapEmpty(minHeap))

        return;

    struct LNode* temp = minHeap->array[0];

    // delete the minimum item from minHeap

    minHeap->array[0] = minHeap->array[minHeap->size - 1];

    --minHeap->size;

    minHeap->array[0]->minHeapIndex = 0;

    minHeapop(minHeap, 0);

    // remove the item from maxHeap

    maxHeap->array[temp->maxHeapIndex] = maxHeap->array[maxHeap->size - 1];

    --maxHeap->size;

    maxHeap->array[temp->maxHeapIndex]->maxHeapIndex = temp->maxHeapIndex;

    maxHeapop(maxHeap, temp->maxHeapIndex);

    // remove the node from List

    removeLNode(CDS->list, &temp);

}

// Function to remove item from min and max heaps

void Delete(struct CDS* CDS, int item)

{

    MinHeap *minHeap = CDS->minHeap;

    MaxHeap *maxHeap = CDS->maxHeap;

    // remove item from min heap

    minHeap->array[temp->minHeapIndex] = minHeap->array[minHeap->size - 1];

    --minHeap->size;

    minHeap->array[temp->minHeapIndex]->minHeapIndex = temp->minHeapIndex;

    minHeapop(minHeap, temp->minHeapIndex);

    // remove item from max heap

    maxHeap->array[temp->maxHeapIndex] = maxHeap->array[maxHeap->size - 1];

    --maxHeap->size;

    maxHeap->array[temp->maxHeapIndex]->maxHeapIndex = temp->maxHeapIndex;

    maxHeapop(maxHeap, temp->maxHeapIndex);

    // remove node from List

    removeLNode(CDS->list, &temp);

}

// insert operation for main data structure

void Insert(struct CDS* CDS, int data)

{

    // insert the item in List

    insertAtHead(CDS->list, temp);

    // insert the item in min heap

    insertMinHeap(CDS->minHeap, temp);

    // insert the item in max heap

    insertMaxHeap(CDS->maxHeap, temp);

}

Hope this illustration helps...

 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(
 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(
 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(
 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(
 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(
 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(
 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(
 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(
 Describe a data structure that supports both removeMin() and removeMax() with O(log(n)) complexity. You need to show the implementation of insert(), removeMin(

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site