B 1 1 1 1 1 0 0 1 0 0 0 1 Determine a basis for B SolutionL

B = {[1 1 1 1], [1 0 0 1], [0 0 0 1]} Determine a basis for B

Solution

Let, x=[a b c d]^T be in B perpendicular

Taking dot product for vectors in B gives

a+b+c+d=0

a+d=0

d=0

Hence, a=0

b+c=0

b=-c

x=b[0 -1 1 0]^T

This is basis for B perpendicular : {[0 -1 1 0]^T}

 B = {[1 1 1 1], [1 0 0 1], [0 0 0 1]} Determine a basis for B SolutionLet, x=[a b c d]^T be in B perpendicular Taking dot product for vectors in B gives a+b+c+

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site