If tanx 3512 and x is in quadrant IV find the exact values
If tan(x) = -35/12 and x is in quadrant IV, find the exact values of the expression without solving for x. sin(x/2) cos(x/2) tan(x/2)
Solution
tan x = - 35/12
sin x = - 35/37
cos x = 12/37
sin (x/2) = sqrt { ( 1- cos x ) / 2 } = sqrt { ( 1 - 12/37 ) / 2 }
sin (x/2) = 5 / sqrt 74
cos (x/2) = sqrt { ( 1 + cos x ) / 2 } = sqrt { 49 / 74 }
cos (x/2) = 7 / sqrt 74
tan (x/2) = ( 1- cos x) / sin x = ( 1- 12/37 ) / -35/37
tan (x/2) = - 25/35 = - 5/7
