6 Determine the following probabilities for the standard nor
Solution
Normal Distribution
 Mean ( u ) =0
 Standard Deviation ( sd )=1
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -1) = (-1-0)/1
 = -1/1 = -1
 = P ( Z <-1) From Standard Normal Table
 = 0.15866
 P(X < 1) = (1-0)/1
 = 1/1 = 1
 = P ( Z <1) From Standard Normal Table
 = 0.84134
 P(-1 < X < 1) = 0.84134-0.15866 = 0.6827                  
 b)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -2) = (-2-0)/1
 = -2/1 = -2
 = P ( Z <-2) From Standard Normal Table
 = 0.02275
 P(X < 2) = (2-0)/1
 = 2/1 = 2
 = P ( Z <2) From Standard Normal Table
 = 0.97725
 P(-2 < X < 2) = 0.97725-0.02275 = 0.9545                  
 c)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -3) = (-3-0)/1
 = -3/1 = -3
 = P ( Z <-3) From Standard Normal Table
 = 0.00135
 P(X < 3) = (3-0)/1
 = 3/1 = 3
 = P ( Z <3) From Standard Normal Table
 = 0.99865
 P(-3 < X < 3) = 0.99865-0.00135 = 0.9973                  
 d)
 P(X > 3) = (3-0)/1
 = 3/1 = 3
 = P ( Z >3) From Standard Normal Table
 = 0.0013                  

