The owner of a gasoline station wants to study gasoline purc
The owner of a gasoline station wants to study gasoline purchasing habits of his customers. He selects a random sample of 64 motorist during a week with the following results: x =10.5 gallons;s=1.5 gallons. Can we conclude that the average amount of gasoline purchased at his station is greater than 10 gallons? Use a significance level of 0.01.
Solution
Formulating the null and alternative hypotheses,              
               
 Ho:   u   <=   10  
 Ha:    u   >   10  
               
 As we can see, this is a    right   tailed test.      
               
 Thus, getting the critical z, as alpha =    0.01   ,      
 alpha =    0.01          
 zcrit =    +   2.326347874      
               
 Getting the test statistic, as              
               
 X = sample mean =    10.5          
 uo = hypothesized mean =    10          
 n = sample size =    64          
 s = standard deviation =    1.5          
               
 Thus, z = (X - uo) * sqrt(n) / s =    2.666666667          
               
 Also, the p value is              
               
 p =    0.003830381          
               
 As |z| > 2.326, and P < 0.01, we   REJECT THE NULL HYPOTHESIS.          
Thus, there is significant evidence that the average amount of gasoline purchased at his station is greater than 10 gallons. [CONCLUSION]

