The contents of bottles of water have a distribution with me
The contents of bottles of water have a distribution with mean 9.1 ounces and standard deviation .3 ounce. Suppose a sample of size 64 will be taken and the sample mean will be calculated. What is the probability that a single bottle of water contains more than 9 ounces?
Select one:
a. .0038
b. .3694
c. .6306
d. .9962
e. Cannot be determined
Solution
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    9      
 u = mean =    9.1      
           
 s = standard deviation =    0.3      
           
 Thus,          
           
 z = (x - u) / s =    -0.333333333      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -0.333333333   ) =    0.63055866 = 0.6306 [ANSWER, OPTION C]

