Solve for A B and C A2C 5 9 5 6 9 Solution9Pythagoras theore
Solution
9).Pythagoras\' theorem
AB^2 = BC^2 + AC^2
AB^2 = 6^2 +15^2
AB^2 = 36+225
AB^2 = 261
AB = sqrt(261)
AB=16.2
we know all side lengths AB(c) =16.2 AC(b)=6 , BC(a) =15
from the triangle C=90 degree
we know the sine law
a/sinA =b/sinB =c/sinC
15/sinA = 16.2/sin90
15/sinA =16.2
sinA= 15/16.2
sinA =0.926
A = arc sin 0.926
A=67.8 = 68(approximatly)
we know sum of angles in a triangle is 180
A+B+C=180
68+B+90=180
158+B=180
B=180-158
B=22
A=68,B=22,C=90
11).
AB^2 = AC^2 +CB^2
AB^2= 2^2 + 5.9^2
AB^2 = 4+34.81
AB^2=38.81
AB= sqrt(38.81)
AB(c)=6.2
we know AB(c) =6.2 , BC(a) = 5.9 , AC(b) =2 , C=90 degree
again apply sine law
a/sinA=b/sinB=c/sinC
5.9/sinA= 6.2/sin90
5.9/sinA= 6.2/1
sinA= 5.9/6.2
sinA=0.952
A =arc sin 0.952
A=72 degree
sum of angles in a triangle =180
A+B+C=180
72+B+90=180
B+162=180
B=180-162
B=18
A=72,B=18C=90

