Let Z be a standard normal random variable Find the followin
Let Z be a standard normal random variable. Find the following:
 Show your work!
 (a) P(Z >1.03)
 (b) P(1.54 <Z <2.26)
 (c) k such that P (-k <Z<k)=.85
(d) k such that P(Z>k)= .04
Solution
Normal Distribution
 Mean ( u ) =0
 Standard Deviation ( sd )=1
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 P(X > 1.03) = (1.03-0)/1
 = 1.03/1 = 1.03
 = P ( Z >1.03) From Standard Normal Table
 = 0.1515                  
 b)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 1.54) = (1.54-0)/1
 = 1.54/1 = 1.54
 = P ( Z <1.54) From Standard Normal Table
 = 0.93822
 P(X < 2.26) = (2.26-0)/1
 = 2.26/1 = 2.26
 = P ( Z <2.26) From Standard Normal Table
 = 0.98809
 P(1.54 < X < 2.26) = 0.98809-0.93822 = 0.0499                  
 d)
 P ( Z > x ) = 0.04
 Value of z to the cumulative probability of 0.04 from normal table is 1.75
 P( x-u/ (s.d) > x - 0/1) = 0.04
 That is, ( x - 0/1) = 1.75
 --> x = 1.75 * 1+0 = 1.751                  

