Consider the following simple competition model An1 aAn cAn
Consider the following simple competition model:
A(n+1)= a*A(n) - c*A(n)*B(n)
B(n+1)= b*B(n) - d*A(n)*B(n)
where a,b,c,d are positive constants. Find all fixed points.
Determine the stability of the fixed points for the specific case a = 1.2, b= 1.3, c= 0.001 and d= 0.002
Solution
forr stability
A(n+1) = A(n)
B(n+1) = B(n)
A(n+1)= a*A(n) - c*A(n)*B(n)
A(n)= a*A(n) - c*A(n)*B(n)
1 = a - c*B(n)
B(n) = (a-1)/c
= 300
-------------------
B(n+1)= b*B(n) - d*A(n)*B(n)
B(n)= b*B(n) - d*A(n)*B(n)
A(n) = (b-1)/d
= 100
