Let T R3 rightarrow P2 be defined by T a b c a b c a bx
Solution
T(a,b,c)=a+b+c+(a+b)x+ax^2=a(1+x+x^2)+b(1+x)+c
Hence, range, R(T)=span{1+x+x^2,1+x,1}=P2
Let,
T(a,b,c)=0=a+b+c+(a+b)x+ax^2
Hence, a+b+c=0,a+b=0,a=0
HEnce, a=0,a+b=0 gives b=0
a+b+c=0 gives c=0
Hence, ker(T)={0}
nullity =dim ker(T)=0
