Find L1 1s2 4s by 3 ways by the first translation theorem b
Solution
Translation Theorem:
L-1 {1/s2+4s} = L-1 {1/s2+4s + 4 - 4}
= L-1 {1/(s+2)2 - 4}
= 1/2 L-1 {2/(s+2)2 - 22}
= 1/2 L-1 {2/s2 - 22}s+2 --> s
= 1/2 e-2t sin(h)(2t)
= 1/2 e-2t {e2t - e-2t/2}
= 1 - e-4t /4
--
Integral transform (by LaPlace):
L-1 {1/s2+4s} = L-1 {1/s(s+4)}
= L-1 {1/4s - 1/4(s+4)}
= L-1 {1/4s} - L-1 {1/4(s+4)}
= 1/4 L-1 {1/s} - 1/4 L-1 1/4(s+4)}
= 1/4(1) -1/4 e-4t
= 1 - e-4t / 4
--
Convolution theorem:
L-1 {1/s2+4s} = L-1 {1/s(s+4)}
taking function seperately;
f(s) = 1/s
f´(s) = 1/s+4
then we have;
L{1} = 1/s
f(s) = 1
and
L{e-4t} = 1/s+4
f´(s) = e-4t
--
Letting f´´(s) be the product of f(s)f´(s):
L {f(t)} = f´´(s)
f(t) = L-1 {f´´(s)}
= L-1 {L(f x f´)(t)}
= (f x f´)(t)
= 0t f(t-u)f´(u) du
= 0t 1.e-4u du
= [e-4u / -4] |ot
= [(e-4t/-4) - (e0/-4)]
= 1 - e-4t / 4
--
Hope it helps!!

