Find L1 1s2 4s by 3 ways by the first translation theorem b

Find L^1 {1/s^2 + 4s} by 3 ways: by the first translation theorem by integral transform by convolution theorem

Solution

Translation Theorem:

L-1 {1/s2+4s} = L-1 {1/s2+4s + 4 - 4}

= L-1 {1/(s+2)2 - 4}

= 1/2 L-1 {2/(s+2)2 - 22}

= 1/2 L-1 {2/s2 - 22}s+2 --> s

= 1/2 e-2t sin(h)(2t)

= 1/2 e-2t {e2t - e-2t/2}

= 1 - e-4t /4

--

Integral transform (by LaPlace):

L-1 {1/s2+4s} = L-1 {1/s(s+4)}

= L-1 {1/4s - 1/4(s+4)}

= L-1 {1/4s} - L-1 {1/4(s+4)}

= 1/4 L-1 {1/s} - 1/4 L-1 1/4(s+4)}

= 1/4(1) -1/4 e-4t

= 1 - e-4t / 4

--

Convolution theorem:

L-1 {1/s2+4s} = L-1 {1/s(s+4)}

taking function seperately;

f(s) = 1/s

f´(s) = 1/s+4

then we have;

L{1} = 1/s

f(s) = 1

and

L{e-4t} = 1/s+4

f´(s) = e-4t

--

Letting f´´(s) be the product of f(s)f´(s):

L {f(t)} = f´´(s)

f(t) = L-1 {f´´(s)}

= L-1 {L(f x f´)(t)}

= (f x f´)(t)

= 0t f(t-u)f´(u) du

= 0t 1.e-4u du

= [e-4u / -4] |ot

= [(e-4t/-4) - (e0/-4)]

= 1 - e-4t / 4

--

Hope it helps!!

 Find L^1 {1/s^2 + 4s} by 3 ways: by the first translation theorem by integral transform by convolution theoremSolutionTranslation Theorem: L-1 {1/s2+4s} = L-1
 Find L^1 {1/s^2 + 4s} by 3 ways: by the first translation theorem by integral transform by convolution theoremSolutionTranslation Theorem: L-1 {1/s2+4s} = L-1

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site