Write v as a linear combination of u1 u2 and u3 if possible
Write v as a linear combination of u1, u2, and u3, if possible. (Enter your answer in terms of u1, u2, and u3. If not possible, enter IMPOSSIBLE.)
Solution
A linear combination is an expression constructed from a set of terms by multiplying each term by a constant and adding the results
v=au1+bu2+cu3 ................................................................(1)
here given that
v=(-1,7,2), u1=(3,2,8), u2=(1,-3,-1), u3=(-2,1,-3)
(-1,7,2)=a(3,2,8)+b(1,-3,-1)+c(-2,1,-3)
(-1,7,2)=(3a+b-2c,2a-3b+c,8a-b-3c)
3a+b-2c=-1..............................................(2)
2a-3b+c=7 .................................................(3)
8a-b-3c=2 ....................................................(4)
solving equation 2,3,and 4,we will get
a=
b=
c=
**NOTE:NOT POSSIBLE TO FIND value a,b,c
so linear combination of u1, u2,and u3 is IMPOSSIBLE
