Consider the Minitab output shown below How many degrees of
Solution
a)
 Standard Error= sd/ Sqrt(n)
 Where,
 sd = Standard Deviation
 n = Sample Size
Standard deviation( sd )= Unknown
 Sample Size(n)=12
 Standard Error = 0.3360
 0.3360 = ( s.d/ Sqrt ( 12) )
 s.d = 0.3360*Sqrt ( 12) = 1.164
b)
 Null, H0: U=25
 Alternate, H1: U>25
 Test Statistic
 Population Mean(U)=25
 Sample X(Mean)=25.6818
 Standard Deviation(S.D)=1.164
 Number (n)=12
 we use Test Statistic (t) = x-U/(s.d/Sqrt(n))
 to =25.6818-25/(1.164/Sqrt(11))
 to =2.03
 P-Value :Right Tail - Ha : ( P > 2.0291 ) = 0.034
c)
 CI = x ± t a/2 * (sd/ Sqrt(n))
 Where,
 x = Mean
 sd = Standard Deviation
 a = 1 - (Confidence Level/100)
 ta/2 = t-table value
 CI = Confidence Interval
 Mean(x)=25.6818
 Standard deviation( sd )=1.164
 Sample Size(n)=12
 Confidence Interval = [ 25.6818 ± t a/2 ( 1.164/ Sqrt ( 12) ) ]
 = [ 25.6818 - 2.201 * (0.336) , 25.6818 + 2.201 * (0.336) ]
 = [ 24.942,26.421 ]
 ANS:
 a)
 The Value of |t | with n-1 = 11 d.f
 b)
 Std dev = 1.164
 Lower bound = 24.942
 T = 2.03

