The serum cholesterol levels of a population of 12 to 14year
The serum cholesterol levels of a population of 12 to 14-year-olds follow a normal distribution with mean 155 mg/dl and standard deviation 27 mg/dl (as in Example 4.1.1).
What percentage of the 12- to 14-year-olds have serum cholesterol values between 145 and 165 mg/dl?
Suppose we were to choose at random from the population a large number of groups of nine 12- to 14-year-olds each. In what percentage of the groups would the group mean cholesterol value be between 145 and 165 mg/dl?
If Y bar represents the mean cholesterol value of a random sample of nine 12- to 14-year-olds from the population, what is Pr{145less than or equal to Ybar less than or equal to 165}?
Solution
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    145      
 x2 = upper bound =    165      
 u = mean =    155      
           
 s = standard deviation =    27      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.37037037      
 z2 = upper z score = (x2 - u) / s =    0.37037037      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.355553274      
 P(z < z2) =    0.644446726      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.288893452 or 28.89% [ANSWER]
*******************
b)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    145      
 x2 = upper bound =    165      
 u = mean =    155      
 n = sample size =    9      
 s = standard deviation =    27      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -1.111111111      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    1.111111111      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.133260263      
 P(z < z2) =    0.866739737      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.733479474 or 73.35% [ANSWER]
*********************
c)
It is the same as part B, 0.733479474. [ANSWER]
       


