The serum cholesterol levels of a population of 12 to 14year

The serum cholesterol levels of a population of 12 to 14-year-olds follow a normal distribution with mean 155 mg/dl and standard deviation 27 mg/dl (as in Example 4.1.1).

What percentage of the 12- to 14-year-olds have serum cholesterol values between 145 and 165 mg/dl?

Suppose we were to choose at random from the population a large number of groups of nine 12- to 14-year-olds each. In what percentage of the groups would the group mean cholesterol value be between 145 and 165 mg/dl?

If Y bar represents the mean cholesterol value of a random sample of nine 12- to 14-year-olds from the population, what is Pr{145less than or equal to Ybar less than or equal to 165}?

Solution

a)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    145      
x2 = upper bound =    165      
u = mean =    155      
          
s = standard deviation =    27      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.37037037      
z2 = upper z score = (x2 - u) / s =    0.37037037      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.355553274      
P(z < z2) =    0.644446726      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.288893452 or 28.89% [ANSWER]

*******************

b)

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    145      
x2 = upper bound =    165      
u = mean =    155      
n = sample size =    9      
s = standard deviation =    27      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u) * sqrt(n) / s =    -1.111111111      
z2 = upper z score = (x2 - u) * sqrt(n) / s =    1.111111111      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.133260263      
P(z < z2) =    0.866739737      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.733479474 or 73.35% [ANSWER]

*********************

c)

It is the same as part B, 0.733479474. [ANSWER]
      

The serum cholesterol levels of a population of 12 to 14-year-olds follow a normal distribution with mean 155 mg/dl and standard deviation 27 mg/dl (as in Examp
The serum cholesterol levels of a population of 12 to 14-year-olds follow a normal distribution with mean 155 mg/dl and standard deviation 27 mg/dl (as in Examp

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site