In each part use the formula in Theorem 145 to compute the i
Solution
a)
A = i -2
1 i
det(A) = i*i - (-2)*1
= -1 +2
= 1
// inverse of a b = 1/(ad-bc) [d -b]
c d -c a
therefore inverse of the matrix = 1/1 [ i 2 ] = [ i 2 ]
-1 i -1 i
now A* A-1 = [ i -2 ] [i 2]
1 i -1 i
= -1 +(-2)(-1) 2i -2i
i -i 2+(-1)
= 1 0
0 1
A-1 *A = [ i 2 ] [ i -2 ]
-1 i 1 i
= -1+2 -2i +2i
-i+i 2 - 1
= 1 0
0 1
therefore A*A-1 = A-1 * A = I
b)
A = [ 2 i ]
1 0
A-1 = 1/(-i) [0 -i]
-1 2
= i [0 -i] // 1/(-i) = i
-1 2
= 0 1
-i 2i
A*A-1 = 2 i 0 1
1 0 -i 2i
= 0-(i*i) 2+i(2i)
0 1
= 1 0 i*i = -1
0 1
A-1 * A = 0 1 2 i
-i 2i 1 0
= 0 +1 0+0
-2i+2i -i*i +0
= 1 0
0 1

