Let v1 2 1 1 v2 0 8 2 v3 6 5 1 Find the values of h for
Let v1 = [2 -1 1] , v2 = [0 8 -2], v3 = [ 6 5 1]. Find the values of h for which b = [h 2 3] is in the span {v1, v2, v3}.
Solution
v1 = [2 -1 1], v2 = [0 8 -2], v3 = [6 5 1] Find the value(s) of h for which b = [h 2 3] is in the span{v1, v2, v3}.
pv1 + qv2 + rv3 = b
p[2 , -1 , 1] + q[0 , 8 , -2] + r[6 , 5 , 1] = [h , 2 , 3]
[2p + 6r , -p + 8q + 5r , p - 2q + r] = [h , 2 , 3]
Equating :
2p + 6r = h
-p + 8q + 5r = 2
p - 2q + r = 3 --> multiply by 4 --> 4p - 8q + 4r = 12
-p + 8q + 5r = 2
4p - 8q + 4r = 12
Adding :
3p + 9r = 14
p + 3r = 14/3
First equation was :
2p + 6r = h
p + 3r = h/3
So, comparing these equations :
h/3 = 14/3
h = 14 --> ANSWER
![Let v1 = [2 -1 1] , v2 = [0 8 -2], v3 = [ 6 5 1]. Find the values of h for which b = [h 2 3] is in the span {v1, v2, v3}.Solutionv1 = [2 -1 1], v2 = [0 8 -2], v Let v1 = [2 -1 1] , v2 = [0 8 -2], v3 = [ 6 5 1]. Find the values of h for which b = [h 2 3] is in the span {v1, v2, v3}.Solutionv1 = [2 -1 1], v2 = [0 8 -2], v](/WebImages/16/let-v1-2-1-1-v2-0-8-2-v3-6-5-1-find-the-values-of-h-for-1027822-1761532335-0.webp)