Verify the following trigonometric identities Show any work
Verify the following trigonometric identities. Show any work necessary.
Solution
2. a) sinx - sinxcos^2x = sin^3x
LHS : sinx - sinxcos^2x = sinx( 1 -cos^2x)
= sinx( sin^2x)
= sin^3x
= RHS
b) ( sin^2x +4sinx +3)/cos^2x = ( 3+sinx)/( 1-sinx)
LHS : ( sin^2x +4sinx +3)/cos^2x
factorise numerator: sin^2x + 4sinx +3 = sin^2x +3sinx +sinx +3
= sinx( sinx +3) +1(sinx +3)
= (1+sinx)( sinx +3)
( sin^2x +4sinx +3)/cos^2x = (1+sinx)( sinx +3)/( 1-sin^2x)
= (1+sinx)( sinx +3)//( 1+sinx)(1 - sinx)
cancelling common factors in numerator and denominator:
= (sinx +3)/( 1- sinx)
= RHS
c) tan^2x/( 1+tan^2x ) = sin^2x
LHS: tan^2x/( 1+tan^2x )
using trigonometric identities: 1+tan^2x = sec^2x
tan^2x/sec^2x = sin^2x
= RHS
