Use cylindrical coordinates Evaluate tripleintegralE times d
Solution
in cylindrical coordinates
x=rcos, y=rsin
x2+y2=r2
x2+y2=4=22,x2+y2=16=42
z=0,z=x+y+8
0<=<=2,2<=r<=4 ,0<=z<=rcos +rsin+8
dv =r dz dr d
E x dV
=[0 to 2] [2 to 4] [0 to rcos +rsin+8] rcos r dz dr d
=[0 to 2] [2 to 4] [0 to rcos +rsin+8] r2cos dz dr d
=[0 to 2] [2 to 4][0 to rcos +rsin+8] r2cos z dr d
=[0 to 2] [2 to 4]r2cos (rcos +rsin+8-0) dr d
=[0 to 2] [2 to 4]r2cos (rcos +rsin+8) dr d
=[0 to 2] [2 to 4] (r3cos2 +r3cossin+8r2cos) dr d
=[0 to 2][2 to 4] ((1/4)r4cos2 +(1/4)r4cossin+(8/3)r3cos) d
=[0 to 2] ((1/4)(44-24)cos2 +(1/4)(44-24)cossin+(8/3)(43-23)cos) d
=[0 to 2] (60cos2 +60cossin+(448/3)cos) d
=[0 to 2] (30(1+cos2) +60cossin+(448/3)cos) d
=[0 to 2] (30+30cos2 +60cossin+(448/3)cos) d
=[0 to 2] (30 +15sin2 +30sin2+(448/3)sin)
=(30(2) +0+0+0) -(0+0+0+0)
=60
E x dV =60
