Find the area of the shaded region under the given normal cu
     Find the area of the shaded region under the given normal curve. mu = 4, sigma = 2. Use the table.  The area of the region under the curve between x - 3 and x - 7 is 
  
  Solution
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    3      
 x2 = upper bound =    7      
 u = mean =    4      
           
 s = standard deviation =    2      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.5      
 z2 = upper z score = (x2 - u) / s =    1.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.3085      
 P(z < z2) =    0.9332      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.6247       [ANSWER]

