Solve the separable differential equation 8x6yx2105dydx 0 Su
Solve the separable differential equation
8x?6y(x^2+1)^(0.5)dydx =0.
Subject to the initial condition: y(0)=5 .
y=
Solution
8x?6y(x^2+1)^(0.5)dy/dx =0.
by variable separare
8xdx=6y(x^2+1)^(0.5)dy
8xdx/(x^2+1)^(0.5)=6ydy
putting z=(x^2+1)
dz=2xdx
so
4dz/z^0.5=6ydy
integrating both sides
4z0.5/0.5=6y2/2+c
8z0.5=3y2+c
8(x^2+1)0.5=3y2+c
As y(0)=5
so 8=75+c
c=-67
therefore
8(x^2+1)0.5=3y2-67
y=(1/sqrt3)(64(x^2+1)2+67)1/4
