b The 95 percent confidence interval is from to c The 99

b) The 95 percent confidence interval is from ( ) to ( ).

c) The 99 percent confidence interval is from ( ) to ( ).

Use the sample information -34, 4, n-10 to calculate the following confidence intervals for assuming the sample is from a normal population.

Solution

a)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.05          
X = sample mean =    34          
z(alpha/2) = critical z for the confidence interval =    1.644853627          
s = sample standard deviation =    4          
n = sample size =    10          
              
Thus,              
Margin of Error E =    2.080593552          
Lower bound =    31.91940645          
Upper bound =    36.08059355          
              
Thus, the confidence interval is              
              
(   31.91940645   ,   36.08059355   ) [ANSWER]

************

b)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    34          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    4          
n = sample size =    10          
              
Thus,              
Margin of Error E =    2.479180129          
Lower bound =    31.52081987          
Upper bound =    36.47918013          
              
Thus, the confidence interval is              
              
(   31.52081987   ,   36.47918013   ) [ANSWER]

***********************

c)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    34          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    4          
n = sample size =    10          
              
Thus,              
Margin of Error E =    3.258194985          
Lower bound =    30.74180501          
Upper bound =    37.25819499          
              
Thus, the confidence interval is              
              
(   30.74180501   ,   37.25819499   ) [ANSWER]

b) The 95 percent confidence interval is from ( ) to ( ). c) The 99 percent confidence interval is from ( ) to ( ). Use the sample information -34, 4, n-10 to c
b) The 95 percent confidence interval is from ( ) to ( ). c) The 99 percent confidence interval is from ( ) to ( ). Use the sample information -34, 4, n-10 to c

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site