Prove the cofunction identity using the addition and subtrac
Prove the cofunction identity using the addition and subtraction formulas:
Prove the identity:
Solution
cos(13pi/15)*cos(-pi/5) - sin(13pi/15)*sin(-pi/5)
use the cos(A +B) = cosAcosB - sinAsinB
So,A = 13pi/15 : B = -pi/5
So, cos(13pi/15)*cos(-pi/5) - sin(13pi/15)*sin(-pi/5) = cos( 13pi/15 -pi/5)
= cos( 10pi/5) = cos2pi =1
2) csc(pi/2 - u) = secu
we know trigonometric identity: sin(pi/2 -x) = sinpi/2cosx - cospi/2sinx = cosx
So, 1/sin(pi/2 -x) = 1/cosx
csc(pi/2 -x) = secx
3) 1 -tanx*tany = cos(x+y)/cosx*cosy
LHS :
1 -tanx*tany = 1 -sinx/cosx*siny/cosy
= (cosxcosy -sinxsiny)/cosxcosy
= cos(x+y)/cosxcosy
= RHs
