x is a normally distributed random variable with a mean of 7
x is a normally distributed random variable with a mean of 7.0 and a standard deviation of 2.50. find the value x such that P(X<x) is equal to .86)>
 x is a normally distributed random variable with a mean of 7.0 and a standard deviation of 2.50. find the value x such that P(X<x) is equal to .86)>
 x is a normally distributed random variable with a mean of 7.0 and a standard deviation of 2.50. find the value x such that P(X<x) is equal to .86)>
Solution
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.86      
           
 Then, using table or technology,          
           
 z =    1.080319341      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    7      
 z = the critical z score =    1.080319341      
 s = standard deviation =    2.5      
           
 Then          
           
 x = critical value =    9.700798352   [ANSWER]  

