Find y as a function of x if y6y8y9ex with initial values y0
Find y as a function of x if: y\'\'\'-6y\'\'+8y\'=9e^x, with initial values y(0)=19, y\'(0)=20, y\'\'(0)=23
Solution
y\'\'\'-6y\'\'+8y\'=9e^x
sol: derivative of Y\'\'\'=3y^2
derivative of Y\'\'=2Y
derivative of Y\'=1
derivative of e^x=e^x
d/dx (Y\'\'\'-6Y\'\'+8y\'=9e^x)
3y\'\'-6x2y\'+8y=9e^x
3(23)-12(20)+8(19) = 9e^x
69-240+152=9e^x
-19=9e^x
e^x=(-19/9)
x=log ((-19)/9)
x=0.324511092 + 1.36437635 i
