Suppose that a random variable x is normally distributed wit
Suppose that a random variable x is normally distributed with mean 50 and standard deviation 9.
(give answer a to four decimal places)
(give answer b to two decimal places)
(give answer c to four decimal places)
Please make the final answer in bold so I can easily find it
Solution
a)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    44      
 x2 = upper bound =    67      
 u = mean =    50      
           
 s = standard deviation =    9      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.666666667      
 z2 = upper z score = (x2 - u) / s =    1.888888889      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.252492538      
 P(z < z2) =    0.970546641      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.718054103   [ANSWER]
******************
b)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.8888      
           
 Then, using table or technology,          
           
 z =    1.220171153      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    50      
 z = the critical z score =    1.220171153      
 s = standard deviation =    9      
           
 Then          
           
 x = critical value =    60.98154037   [ANSWER]
*******************
c)
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    50.2      
 u = mean =    50      
 n = sample size =    25      
 s = standard deviation =    9      
           
 Thus,          
           
 z = (x - u) * sqrt(n) / s =    0.111111111      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   0.111111111   ) =    0.455764119 [ANSWER]
   
   


