3 17 Points Given fx v2x a State the domain and range of f b
3. 17 Points] Given fx)- v2x- (a) State the domain and range of f. (b) Verify f is one-to-one. (c) Find the inverse of the function. ![3. 17 Points] Given fx)- v2x- (a) State the domain and range of f. (b) Verify f is one-to-one. (c) Find the inverse of the function. Solutionf(x)=(2x-5) 1)2x-5 3. 17 Points] Given fx)- v2x- (a) State the domain and range of f. (b) Verify f is one-to-one. (c) Find the inverse of the function. Solutionf(x)=(2x-5) 1)2x-5](/WebImages/16/3-17-points-given-fx-v2x-a-state-the-domain-and-range-of-f-b-1029946-1761533692-0.webp)
Solution
f(x)=(2x-5)
1)2x-5>0
x>5/2
domain =[5/2,)
range =[0,)
2) f(x)=f(b)
(2a-5)=(2b-5)
2a-5=2b-5
2a=2b
a=b
therefore f(x)=(2x-5)is one -to -one function
3)let f(x)=y =>x=f-1(y)
(2x-5)=y
(2x-5)=y2
x=(y2+5)/2
f-1(y)=(y2+5)/2
f-1(x)= (x2+5)/2
d)(fof-1)x
=f(f-1(x))
=(2(x2+5)/2 -5)
=((x2+5) -5)
=x2
=x
(f-1of)x
=f-1(f(x))
=(((2x-5))2+5)/2
=((2x-5)+5)/2
=2x/2
=x
e) domain =[0,)
range =[5/2,)
![3. 17 Points] Given fx)- v2x- (a) State the domain and range of f. (b) Verify f is one-to-one. (c) Find the inverse of the function. Solutionf(x)=(2x-5) 1)2x-5 3. 17 Points] Given fx)- v2x- (a) State the domain and range of f. (b) Verify f is one-to-one. (c) Find the inverse of the function. Solutionf(x)=(2x-5) 1)2x-5](/WebImages/16/3-17-points-given-fx-v2x-a-state-the-domain-and-range-of-f-b-1029946-1761533692-0.webp)
![3. 17 Points] Given fx)- v2x- (a) State the domain and range of f. (b) Verify f is one-to-one. (c) Find the inverse of the function. Solutionf(x)=(2x-5) 1)2x-5 3. 17 Points] Given fx)- v2x- (a) State the domain and range of f. (b) Verify f is one-to-one. (c) Find the inverse of the function. Solutionf(x)=(2x-5) 1)2x-5](/WebImages/16/3-17-points-given-fx-v2x-a-state-the-domain-and-range-of-f-b-1029946-1761533692-1.webp)