1 nd all complex values z satisfying the given equation cosh
1. nd all complex values z satisfying the given equation
coshz = i
Please show all work. I will rate immediately thanks
Solution
given coshz = i
cosh(z)= cosh(x+iy)= cos(y)cosh(x)+isin(y)sinh(x) = i
cosh(x) = [e^x+e^-x]/2
sinh(x) =[e^x-e^-x]/2
We must solve: cos(y)cosh(x)+isin(y)sinh(x) = 0+i(1)
Then: we must solve:
cos(y)[e^x+e^-x]/2 = 0 (1)
sin(y)[e^x-e^-x]/2 = 1 (2)
From (1)
cos(y) = 0 or [e^x+e^-x] =0
If [e^x+e^-x] = 0 then [e^(2x)+1]/(e^x) = 0 (no solution)
If cos(y) =0 (x = pi/2 +k(pi))
then sin(y) = 1 or sin(y)=-1
Using (2)
[e^x-e^-x]/2 = 1
or
-[e^x-e^-x]/2 = 1
Then:
If [e^x-e^-x]/2 = 1
(e^2x-1)/e^x = 2
e^2x-2e^x-1=0
(e^x)^2-2(e^x)-1=0
taking u=e^x (x = ln(u))
u^2 -2u-1=0
u = [2±8]/2
u = 1±2
u = 1+2
or
u = 1-2 (not positive)
x = ln(1+2)
Then one possibilty for z=x+iy (when sin(y)=1) is:
y = pi/2 + 2k(pi) (k integer)
x = ln(1+2)
If -[e^x-e^-x]/2 = 1 (sin(y)=-1)
[e^(2x)-1]/(e^x) = -2
e^(2x)+2e^x-1 = 0
(e^x)^2+2(e^x)-1=0
taking u=e^x (x = ln(u))
u^2 +2u-1=0
u = [-2±8]/2
u = -1±2
u = -1+2
or
u = -1-2 (not positive)
x = ln(-1+2)
Then one possibilty for z=x+iy (when sin(y)=-1) is:
y = 3pi/2 + 2k(pi) (k integer)
x = ln(-1+2)

