Express fx in the form fx x kqx r for the given value of
Express f(x) in the form f(x) = (x - k)q(x) + r for the given value of k.
f(x) = 3x4 - 2x3 - 10x2 + 15; k = 2
Solution
We have f (x) = 3x4 - 2x3 - 10x2 + 15 so that f ( x - k) = 3( x - k )4 - 2 ( x - k)3 - 10(x - k)2 + 15. NOw, when k = 2, we have f ( x - 2) = 3( x - 2 )4 - 2 ( x - 2)3 - 10(x - 2)2 + 15.= 3( x4 - 8x3 + 24x2 -32x + 16) - 2(x3 - 6x2 + 12x - 8) - 10(x2 - 4x + 4) + 15 = 3x4 - 24x3 + 72x2 - 96x + 48 - 2x3 + 12x2 -24x + 16 - 10x2 + 40x - 40 + 15 = 3x4 - 26x3 + 74x2 - 80x + 39
