How do I solve he system 2x 1 3y 11 and 2x 3y 1 26 How
How do I solve he system; 2^(x + 1) + 3^(y) = 11 and 2^x - 3^(y + 1) = -26?
How do I solve he system; 2^(x + 1) + 3^(y) = 11 and 2^x - 3^(y + 1) = -26?
Solution
2(x + 1) + 3y = 11 ---------- (1) , 2x - 3(y + 1) = -26 ------ (2)
multiply equation (2) with 2
==> 2 * (2) ==> 2[2x - 3(y + 1)] = 2(-26)
==> 2(x +1) - 2(3)(y +1) = -52 ------- (3) since am * an = am+n
(1) - (3) ==>
2(x + 1) + 3y - (2(x +1) - 2(3)(y +1) ) = 11 - (-52)
==> 2(x + 1) + 3y - 2(x +1) + 2(3)(y +1) = 63
==> 3y + 2(3)(y +1) = 63
==> 3y + 2(3)(3)y = 63 since am+n = am * an
==> 3y + 6(3)y = 63
==> 7(3y) = 63
==> 3y = 63/7 = 9
==> 3y = 32
==> y = 2
now substitute y = 2 in equation (1)
==> 2(x + 1) + 32 = 11
==> 2(x + 1) = 11 - 9
==> 2(x + 1) = 2
==> 2(x + 1) = 21
==> x +1 = 1
==> x = 0
Hence x = 0 , y = 2
