How do I solve he system 2x 1 3y 11 and 2x 3y 1 26 How

How do I solve he system; 2^(x + 1) + 3^(y) = 11 and 2^x - 3^(y + 1) = -26?
How do I solve he system; 2^(x + 1) + 3^(y) = 11 and 2^x - 3^(y + 1) = -26?

Solution

2(x + 1) + 3y = 11 ---------- (1) , 2x - 3(y + 1) = -26 ------ (2)

multiply equation (2) with 2

==> 2 * (2) ==> 2[2x - 3(y + 1)] = 2(-26)

==> 2(x +1) - 2(3)(y +1) = -52 ------- (3)       since am * an = am+n

(1) - (3) ==>

2(x + 1) + 3y - (2(x +1) - 2(3)(y +1) ) = 11 - (-52)

==> 2(x + 1) + 3y - 2(x +1) + 2(3)(y +1) = 63

==> 3y + 2(3)(y +1) = 63

==> 3y + 2(3)(3)y = 63         since am+n = am * an

==> 3y + 6(3)y = 63

==> 7(3y) = 63

==> 3y = 63/7 = 9

==> 3y = 32

==> y = 2

now substitute y = 2 in equation (1)

==> 2(x + 1) + 32 = 11

==> 2(x + 1) = 11 - 9

==> 2(x + 1) = 2

==> 2(x + 1) = 21

==> x +1 = 1

==> x = 0

Hence x = 0 , y = 2

How do I solve he system; 2^(x + 1) + 3^(y) = 11 and 2^x - 3^(y + 1) = -26? How do I solve he system; 2^(x + 1) + 3^(y) = 11 and 2^x - 3^(y + 1) = -26?Solution2

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site