Prove that the quotient S1 x 0 1 is homeomorphic to the sph
Prove that the quotient S^1 x [0, 1]/ ~ is homeomorphic to the sphere S^2, where ((x,y), t) ~ ((x\', y\'), t\') if either t = t\' = 1, t = t\' = 0 or ((x, y), t) = ((x\',y\'), t\').
Solution
Case I: Let t = t\' = 1
Then ((x,y), 1) ~((x\', y\'),1)
by T(x,y) = (x\',y\')
Hence The quotient is homeomorphic if t = t\' =1
-----------------------------------------------------------------------------------------------------------------
Case II: If t = t\' =0
then ((x,y) , 0) ~((x\', y\'),0)
Hence by defining T(x,y) = (x\',y\')
Quotient S is homeomorphic to sphere.
--------------------------------------------------------------------------------
Case III: ((x,y), t)= ((x\',y\'),t\')
the mapping T(x,y,t) = (x\',y\',t\')
proved that S is homeomorphic.
![Prove that the quotient S^1 x [0, 1]/ ~ is homeomorphic to the sphere S^2, where ((x,y), t) ~ ((x\', y\'), t\') if either t = t\' = 1, t = t\' = 0 or ((x, y), Prove that the quotient S^1 x [0, 1]/ ~ is homeomorphic to the sphere S^2, where ((x,y), t) ~ ((x\', y\'), t\') if either t = t\' = 1, t = t\' = 0 or ((x, y),](/WebImages/17/prove-that-the-quotient-s1-x-0-1-is-homeomorphic-to-the-sph-1030555-1761534061-0.webp)