A consumer products company is formulating a new shampoo and
A consumer products company is formulating a new shampoo and is interested in foam height (in millimeters). Foam height is approximately normally distributed and has a standard deviation of 20 millimeters. The company wished to test H0: = 175 against H1: > 175 millimeters, using the results of n =10 samples.
1) If the sample data result in = 190 millimeters, find the value for the test statistic z0.
Round the final answer to two decimal places (e.g. 98.76)
2)How \"unusual\" is the sample value = 190 if the true mean is really 175? That is, what is the probability you would observe a sample average as large as 190 millimeters (or larger), if the true mean foam height was really 175 millimeters?
Solution
1.
Formulating the null and alternative hypotheses,              
               
 Ho:   u   <=   175  
 Ha:    u   >   175  
               
 As we can see, this is a    right   tailed test.      
               
               
 Getting the test statistic, as              
               
 X = sample mean =    190          
 uo = hypothesized mean =    175          
 n = sample size =    10          
 s = standard deviation =    20          
               
 Thus, z = (X - uo) * sqrt(n) / s =    2.37 [ANSWER]
*********************          
           
 2)
Using table/technology, the right tailed area of this z score is
           
 p =    0.008853033   [ANSWER]      

