Rc dV0dt V0 Vv where Vi omega sin wt V0 A sin wt B sin
Rc dV_0/dt + V_0 = V_v where V_i = omega sin wt V_0 = A sin wt + B sin wt (steady state) Show that: A = 9/1 + (RC_W)^2; B = -RCwa/1 + (RCw)^2
Solution
Brute Force Method: Start with Kirchhoff\'s loop law:
V(i) = VR(t) + Vo (t)
a sin wt = IR + Q / C
= RdQ(t ) / dt + Q(t) / C
We have to solve an inhomogeneous D.E. The usual way to solve such a D.E. is to assume the solution has
the same form as the input:
Q(t) =a sinwt + b coswt
Plug our trial solution Q(t) back into the differential equation:
= R . d (a sinwt + b coswt)/ dt + (a sinwt + b coswt) /C
a sin wt = aRw coswt - bRw sinwt + (a / C)sinwt + (b / C)coswt
= (aRw +b / C)coswt +(a / C - bRw )sinwt
=
a =(a / C - bRw)...................1)
- aRw = b / C……………..2)
using eq 1 and 2 ,
a= =(a / C - ( - aRw .C ) Rw
a = Ca / (1+ (RCw )2 )
a = q / (1+ (RCw )2 )
In the same way,
b= - RCw a/ (1+ (RCw )2 )
