1 Let f R R be defined by fx 2016 4x Prove that Imf R 2Le
1) Let f : R R be defined by f(x) = 2016 4x. Prove that Imf = R
2)Let f F(R) be defined by f(x) = x2n, where n Z+, and S = {y R | y 0}. Prove that Imf = S.
Solution
1)
Let, y be in R
y=2016-4x
4x=2016-y
x=504-y/4
Hence, f(x)=y
So, Imf=R
2)
f(x) = x2n
LEt, y<=0
So, y=-k ,k>=0
k=x^{2n}
k=(x^2)^n
x^2=(k)^{1/n}
|x|=sqrt{(k)^{1/n}}
|x|=sqrt{(-y)^{1/n}}
Hence, imF=S
because -x^{2n}<=0
