Describe the basic configuration for an oscillator with reso


Describe the basic configuration for an oscillator with resonat circuit. What types of oscillators can be obtained according to the reactive element used, give an example.

Solution

Hartely oscillators and collipts oscialltor

The basic configuration of the Colpitts Oscillator resembles that of the Hartley Oscillator but the difference this time is that the centre tapping of the tank sub-circuit is now made at the junction of a “capacitive voltage divider” network instead of a tapped autotransformer type inductor as in the Hartley oscillator.

The Colpitts oscillator uses a capacitive voltage divider network as its feedback source. The two capacitors, C1 and C2 are placed across a single common inductor, L as shown. Then C1, C2 and L form the tuned tank circuit with the condition for oscillations being: XC1 + XC2 = XL, the same as for the Hartley oscillator circuit.

The advantage of this type of capacitive circuit configuration is that with less self and mutual inductance within the tank circuit, frequency stability of the oscillator is improved along with a more simple design.

As with the Hartley oscillator, the Colpitts oscillator uses a single stage bipolar transistor amplifier as the gain element which produces a sinusoidal output.

Oscillators are also used in many pieces of test equipment producing either sinusoidal sine waves, square, sawtooth or triangular shaped waveforms or just a train of pulses of a variable or constant width. LC Oscillators are commonly used in radio-frequency circuits because of their good phase noise characteristics and their ease of implementation.

An Oscillator is basically an Amplifier  with “Positive Feedback”, or regenerative feedback (in-phase) and one of the many problems in electronic circuit design is stopping amplifiers from oscillating while trying to get oscillators to oscillate.

Oscillators work because they overcome the losses of their feedback resonator circuit either in the form of a capacitor, inductor or both in the same circuit by applying DC energy at the required frequency into this resonator circuit. In other words, an oscillator is a an amplifier which uses positive feedback that generates an output frequency without the use of an input signal. It is self sustaining.

Then an oscillator has a small signal feedback amplifier with an open-loop gain equal too or slightly greater than one for oscillations to start but to continue oscillations the average loop gain must return to unity. In addition to these reactive components, an amplifying device such as anOperational Amplifier or Bipolar Transistor is required. Unlike an amplifier there is no external AC input required to cause the Oscillator to work as the DC supply energy is converted by the oscillator into AC energy at the required frequency

 Describe the basic configuration for an oscillator with resonat circuit. What types of oscillators can be obtained according to the reactive element used, give

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site