Solve for x logx 5 log x 2 log 2x 6Solutionlogx5 logx2
Solve for x: log(x + 5) + log (x + 2) = log (2x + 6).
Solution
log(x+5) +log(x+2) = log(2x+6)
Use the log property : LogA +LogB = log(A*B)
So, Log(x+5)(x+2) = log(2x+6)
So, we can equate the aargumante inside the log on both sides:
(x+5)(x+2) = (2x+6)
x^2 +7x +10 = 2x +6
x^2 +5x +4 =0
factorise to solve for x:
x^2 +4x +x+4=0
x(x+4) 1(x+4) =0
(x+1)(x+4) =0
Solution : x= -1 , x= -4
