Simplify evaluate if possible b cos2cos1rad32 c tansec12 d c
Simplify (evaluate) if possible:
b) cos(2cos^-1(rad3/2))
c) tan(sec^-1(2))
d) cot(csc^-1(3))
e) sin(cos^-1(5/2))
f) tan(tan^-1(5/2))
Solution
a) sin ( sin^-1 1 / sqrt 2 )
let sin^-1 (1/ sqrt 2) = x
sin x = 1/ sqrt 2
therefore,
sin ( x) = 1/ sqrt 2
= sqrt 2 / 2
b) cos ( 2 cos^-1 ( sqrt 3 /2 ))
let cos^-1 ( sqrt 3 /2 ) = x
cos x = sqrt 3 / 2
sin x = 1 / 2
hence , cos ( 2x ) = cos^2 x - sin^2 x = ( sqrt 3 / 2)^2 - (1/2)^2
= 3 / 4 - 1/4 = 1/ 2
c) tan ( sec^-1 (2) )
let sec^-1 (2) = x
sec x = 2
therefore, tan x = sqrt 3
d) cot (csc^-1(3))
let csc^-1 (3) = x
csc x = 3
therefore, cot x = sqrt 8
