11 Establish each identity Start from left side of the equat
     11) Establish each identity. Start from left side of the equation (LHS), and show that it\'s equal to right hand side (RH   a) (sin x + cos x)^2 = 1 + sin 2x b) sin^2x + cos^2x=cos^2 x I c) sin Theta(cot Theta +tan Theta)=sec Theta d) csc Theta- cot Theta=sin Theta/a+cos Theta    
  
  Solution
1.
LHS = (sin x + cos x)^2
= sin^2 x + cos^2 x + 2 sin x cos x
= 1 + sin 2x
= RHS
2.
LHS = sin^2 x + cos 2x
= sin^2 x + cos^2 x - sin^2 x
= cos^2 x
=RHS
3.
LHS = sin x (cot x + tan x)
= sinx (1/tanx + tanx)
=sinx / tan x * [1 + tan^2 x]
= sinx * cosx / sin x * sec^2 x
= cos x / cos^2 x
= 1/cos x
= sec x
4.
LHS =
=cosecx - cotx
= 1/sin x - cosx/sinx
= (1-cos x ) / sin x
=[(1-cos x ) * (1+cos x)] / [ sinx (1+cosx)]
= [1-cos^2 x] / [sin x *(1+cos x)]
= sin^2 x / [sin x *(1+cos x)]
=sinx/(1+cos x)
=RHS
if you have further query, then ask in comment.

