1Consider two random variables X1 and X2 with mean values mu

1.Consider two random variables X1 and X2 with mean values mu1 = 10 and mu2 = 2, respectively.

What is the numerical value of E(2X1 - 3X2)?

26

20

14

8

5

3.33

2.Consider two independent random variables X1 and X2 with standard deviation values sigma1 = 6 and sigma2 = 4, respectively.

What is the numerical value of V(2X1 - 3X2)?

0

2

10

20

52

288

3.Let X1, X2,

Solution

E(2X1 - 3X2) = 2E(x1) -3E(x2) =

14

----------------------------------

V(2X1 - 3X2) = 22(62)+32(42) =

144+144= 288

-------------------------------

E(Xbar) = 75

-------------------------------

standard deviation of Xbar = 16/8 =2

--------------------------------

These three are true

E(Xbar) = mu

V(Xbar) = sigma^2 / n

E(T) = n(mu)

-------------------------------

6) 10,000/12 is answer

---------------------------

7) expected value (mean) of Phat = 50

1.Consider two random variables X1 and X2 with mean values mu1 = 10 and mu2 = 2, respectively. What is the numerical value of E(2X1 - 3X2)? 26 20 14 8 5 3.33 2.
1.Consider two random variables X1 and X2 with mean values mu1 = 10 and mu2 = 2, respectively. What is the numerical value of E(2X1 - 3X2)? 26 20 14 8 5 3.33 2.

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site