1Consider two random variables X1 and X2 with mean values mu
1.Consider two random variables X1 and X2 with mean values mu1 = 10 and mu2 = 2, respectively.
What is the numerical value of E(2X1 - 3X2)?
26
20
14
8
5
3.33
2.Consider two independent random variables X1 and X2 with standard deviation values sigma1 = 6 and sigma2 = 4, respectively.
What is the numerical value of V(2X1 - 3X2)?
0
2
10
20
52
288
3.Let X1, X2,
Solution
E(2X1 - 3X2) = 2E(x1) -3E(x2) =
14
----------------------------------
V(2X1 - 3X2) = 22(62)+32(42) =
144+144= 288
-------------------------------
E(Xbar) = 75
-------------------------------
standard deviation of Xbar = 16/8 =2
--------------------------------
These three are true
E(Xbar) = mu
V(Xbar) = sigma^2 / n
E(T) = n(mu)
-------------------------------
6) 10,000/12 is answer
---------------------------
7) expected value (mean) of Phat = 50

