find ht if ht7t122t67Solutiongiven ht7t122t67 ht7t122t67 dif
find h\'(t) if h(t)=(7/(t^(1/2)))-(2/(t^(6/7)))
Solution
given
h(t)=(7/t^1/2)-(2/t6/7)
h(t)=(7t-1/2)-(2t-6/7)
differentiate on both sides,d/dx xn=nxn-1
h\'(t)=(7(-1/2)t(-1/2)-1)-(2(-6/7)t(-6/7)-1)
h\'(t)=((-7/2)t-3/2)+((12/7)t-13/7)
h\'(t)=((-7/2)/t3/2)+((12/7)/t13/7)
h\'(t)=(-7/(2t3/2))+(12/(7t13/7))
