Find the real form of the general solution for the system of
Find the real form of the general solution for the system of differential equations x\' = (1 -2 4 -3)x.
Solution
LEt, x=[u v]^T
u\'=u-2v
v\'=4u-3v
v=(u-u\')/2
v\'=(u\'-u\'\')/2=4u-3v=4u-3(u-u\')/2
(u\'-u\'\')/2=(8u-3u+3u\')/2
u\'-u\'\'=5u+3u\'
u\'\'+2u\'+5u=0
Assume, u=exp(kt)
Substituting gives
k^2+2k+5=0
k=-1+2i,-1-2i
So, u=exp(-t)(A sin(2t)+B cos(2t))
v=(u-u\')/2
u\'=-u+exp(-t)(2A cos(2t)-2B sin(2t))
v=(2u-exp(-t)(2A cos(2t)-2B sin(2t)))/2
v=exp(-t)(A sin(2t)+B cos(2t))-exp(-t)(A cos(2t)-B sin(2t))
![Find the real form of the general solution for the system of differential equations x\' = (1 -2 4 -3)x.SolutionLEt, x=[u v]^T u\'=u-2v v\'=4u-3v v=(u-u\')/2 v\ Find the real form of the general solution for the system of differential equations x\' = (1 -2 4 -3)x.SolutionLEt, x=[u v]^T u\'=u-2v v\'=4u-3v v=(u-u\')/2 v\](/WebImages/17/find-the-real-form-of-the-general-solution-for-the-system-of-1032282-1761535162-0.webp)