find domain in interval notation fx log86x x sqrtx51Solut
find domain in interval notation
f(x) = log8(-6x) - |x| / (sqrt(x+5)-1)
Solution
I understand this is the function :f(x) = log8(-6x) - |x|/[sqrt(x+5) -1]
we have to see where f(x) exists in real plane.
Now -6x>0 ---> x<0
Further denominator should not be zero : x +5>=0
x>=-5
So, combining the two above Domain: [-5 , 0)
![find domain in interval notation f(x) = log8(-6x) - |x| / (sqrt(x+5)-1)SolutionI understand this is the function :f(x) = log8(-6x) - |x|/[sqrt(x+5) -1] we have find domain in interval notation f(x) = log8(-6x) - |x| / (sqrt(x+5)-1)SolutionI understand this is the function :f(x) = log8(-6x) - |x|/[sqrt(x+5) -1] we have](/WebImages/17/find-domain-in-interval-notation-fx-log86x-x-sqrtx51solut-1032439-1761535253-0.webp)