Let S be the sum when 5 fair dice are rolled Find the pgf of
Let S be the sum when 5 fair dice are rolled. Find the pgf of S and describe how you can use it to find the probability P(S = 20).
Solution
When 5 fair dice are rolled outcome can be 5, 6, 7,......30
The total outcomes will be 65 = 7776
---------------------------------------------------------------------------------------------------
Favourable outcomes for 5 =1
30 =1
For 6 is 4 dice 1 and any one dice 2 i.e. no of ways = 5c1 =5
For 7, 4 dice 1 and any one 3 Or 2 dice 2, 3 dice 1
no of ways. = 5C1+5c2 = 15.
For 8, it would be 4 dice1, 1 die 4, 2 dice 1, 2 dice 3, or 1 die 3 and 1 die 2, 3 die 1 or 3 die 2, 2 die 1 or
=35
Thus sums will be like the one listed below:
For 8,
Hence prob for (s=20) = 0.0837186
| Sum | fvble outcomes | Prob |
| 5 | 1 | 0.000128601 |
| 6 | 5 | 0.000643004 |
| 7 | 15 | 0.001929012 |
| 8 | 35 | 0.004501 |
| 9 | 70 | 0.009002 |
| 10 | 126 | 0.0162036 |
| 11 | 205 | 0.026363 |
| 12 | 305 | 0.039223 |
| 13 | 420 | 0.054012 |
| 14 | 540 | 0.069444 |
| 15 | 651 | 0.0837186 |
| 16 | 735 | 0.094521 |
| 17 | 780 | 0.100308 |
| 18 | 780 | 0.100308 |
| 19 | 735 | 0.094521 |
| 20 | 651 | 0.0837186 |
| 21 | 540 | 0.069444 |
| 22 | 420 | 0.054012 |
| 23 | 305 | 0.039223 |
| 24 | 205 | 0.026363 |
| 25 | 126 | 0.0162036 |
| 26 | 70 | 0.009002 |
| 27 | 35 | 0.004501 |
| 28 | 15 | 0.001929012 |
| 29 | 5 | 0.000643004 |
| 30 | 1 | 0.000128601 |
| Total | 7776 | 0.999993635 |

