Given A 1 2 1 0 1 0 4 6 1 B 2 9 1 3 1 1 1 2 0 and c 1 2 3
Solution
Solution:
Given order of A =3*3=3 rows and 3 columns
order of B=3*3=3 rows and 3 columns
Since order of A and B are same we can find difference of 2 matrices.
To find A-2B
Find 2B
Multply each element of B to get 2B
B= 2 9 1
3 -1 -1
1 2 0
2B= 4 18 2
6 -2 -2
2 4 0
A -2B= 1 2 -1 _ 4 18 2
0 1 0 6 -2 -2
4 6 1 2 4 0
=1-4 2-18 -1-2
0-6 1-(-2) 0-(-2)
4-2 6-4 1-0
A-2B= -3 -16 -3
-6 3 2
2 2 1
AB=multiplying 2 matrices A and B
For multiplying 2 matrices thefollowing conditions to be satisfied
no of columns of first matrix =no of rows of second matrix
Here no of columns of A=3=no of rows of B
Henve we can multiply AB
order of AB=3*3
AB= 1 2 -1 2 9 1
0 1 0 3 -1 -1
4 6 1 1 2 0
Multiply 1 st row of A with 1 st column of B,1 st row of A with second column of B,1st row of A with third column of B to get first row elements of AB
1(2)+2(3)-1(1 ) 1(9)+2(-1)-1(2) 1(1)+2(-1)+(-1)(0)
0(2)+1(3)+0(1) 0(9)+1(-1)+0(2) 0(1)+1(-1)+0(0)
4(2)+6(3)+1(1) 4(9)+6(-1)+1(2) 4(1)+6(-1)+1(0)
7 5 -1
3 -1 -1
27 32 -2
C Inverse=
C-1 =adjointC/DetC
Inverse of C exists if Detc not equal to zero
that is C should be singular matrix
Det(2*2) matrix=ad-bc
C= 1 2
3 8
DetC=ad-bc=1(8)-2(3)=8-6=20
Inverse of C exists.
C-1 =1\\detC d -b
-c a
=1/2 8 -2
-3 1
=8/2 -2/2
-3/2 1/2
therefore C inverse = 4 -1
-3/2 1/2
![Given A = [1 2 -1 0 1 0 4 6 1], B = [2 9 1 3 -1 -1 1 2 0], and c = [1 2 3 8] Calculate A-2B and AB. Then find C^-1, the inverse of C.SolutionSolution: Given or Given A = [1 2 -1 0 1 0 4 6 1], B = [2 9 1 3 -1 -1 1 2 0], and c = [1 2 3 8] Calculate A-2B and AB. Then find C^-1, the inverse of C.SolutionSolution: Given or](/WebImages/17/given-a-1-2-1-0-1-0-4-6-1-b-2-9-1-3-1-1-1-2-0-and-c-1-2-3-1032537-1761535313-0.webp)
![Given A = [1 2 -1 0 1 0 4 6 1], B = [2 9 1 3 -1 -1 1 2 0], and c = [1 2 3 8] Calculate A-2B and AB. Then find C^-1, the inverse of C.SolutionSolution: Given or Given A = [1 2 -1 0 1 0 4 6 1], B = [2 9 1 3 -1 -1 1 2 0], and c = [1 2 3 8] Calculate A-2B and AB. Then find C^-1, the inverse of C.SolutionSolution: Given or](/WebImages/17/given-a-1-2-1-0-1-0-4-6-1-b-2-9-1-3-1-1-1-2-0-and-c-1-2-3-1032537-1761535313-1.webp)