A simple random sample of size n36 is obtained from a popula

A simple random sample of size n=36 is obtained from a population with a mean of 64 and a standard deviation of 18.

a) Describe the sampling distribution of x

b) what is P(x 62.6)?

c) What is P(x 68.7)?

d) What is P (59.8 < x < 65.9)?

Solution

a)

It is bell shaped, with the same mean, u(x) = 64, and standard deviation given by

s(x) = s/sqrt(n) = 18/sqrt(36) = 3.

This is all by central limit theorem.

***************

b)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    62.6      
u = mean =    64      
n = sample size =    36      
s = standard deviation =    18      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    -0.466666667      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.466666667   ) =    0.320369191 [ANSWER]

***************

c)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    68.7      
u = mean =    64      
n = sample size =    36      
s = standard deviation =    18      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    1.566666667      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1.566666667   ) =    0.058596313 [ANSWER]

***************

d)

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    59.8      
x2 = upper bound =    65.9      
u = mean =    64      
n = sample size =    36      
s = standard deviation =    18      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u) * sqrt(n) / s =    -1.4      
z2 = upper z score = (x2 - u) * sqrt(n) / s =    0.633333333      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.080756659      
P(z < z2) =    0.736742005      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.655985346   [ANSWER]  

A simple random sample of size n=36 is obtained from a population with a mean of 64 and a standard deviation of 18. a) Describe the sampling distribution of x b
A simple random sample of size n=36 is obtained from a population with a mean of 64 and a standard deviation of 18. a) Describe the sampling distribution of x b

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site